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Abstract

For historic reasons, reviewed here, psychologists commonly use techniques of

statistical inference, valid only when cases are randomly sampled from large

populations, in the analysis of data obtained from the randomization of available, non-

sampled cases. Modern computing power now permits more appropriate statistical

inference for such studies, in the form of rerandomization analysis. The foundations of

this approach are outlined and rerandomization illustrated for a range of randomized

available case designs.
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 In a recent issue of The American Statistician two medical researchers

(Ludbrook & Dudley, 1998) summarize and comment upon a survey they carried out

of  “252 prospective, comparative studies reported in five, frequently cited biomedical

journals.” Ludbrook and Dudley report that in these studies the “experimental groups

were constructed by randomization in 96% of the cases and by random sampling in

only 4%” and go on to express concern that the results of 84% of the randomization-

design studies were analyzed by  or  tests. They explain these results as follows:t F

“Statisticians appear to believe that biomedical researchers do most experiments by

taking random samples, and therefore recommend statistical procedures that are valid

under the population model of inference. In fact, randomization of a nonrandom

sample, not random sampling, is more usual. Given this, it is our thesis that the

randomization rather than population model applies, and that the statistical procedures

best adapted to this model are those based on permutation.” (p. 127). They call upon

statisticians to provide more appropriate training and consulting.

 A survey of recently published psychological research would almost certainly

find the same, apparent mismatch between statistical analysis and study design.

Psychologists rarely draw random samples of laboratory animals, clinical clients, or

student volunteers from large or global populations; we generally employ local stocks

of cases, those available to us. Like our medical counterparts we recognize the

importance to scientific inference of randomizing these available cases among the

treatments to be compared. And, with considerable regularity, we choose to ground

our treatment comparisons statistically in an analysis of variance or its more focussed

form, a -test.t

 Is the mismatch between design and analysis real? If it is, how did it arise?

What problems has it given rise to? How does the model for statistical inference that

Ludbrook and Dudley refer to as randomization or permutation differ from a

population inference model?  Why is the randomization model more appropriate to
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randomized available (i.e., nonrandom) case studies? How can we design studies that

will support randomization inference?

 These are the questions I’ll answer. First, there is a mismatch. Briefly, we

commonly over interpret the analysis of variance when it is applied to randomized

available case studies. To appreciate the problem and its origin, it will help to review

some statistical work of the 1930s.

The Permutation Test Defined and Approximated

 In his  R. A. Fisher (1935) described, at least byDesign of Experiments

example, a nonparametric alternative to the -test for a paired sample of observations.t

The data analyzed by Fisher were collected, some sixty years earlier, by Charles

Darwin to compare the growth of self-fertilized and cross-fertilized plant material. To

appreciate the logic of Fisher’s nonparametric test it is worth revisiting the example. I

will take some liberties with the description of the study (as did Fisher), but only to

emphasize the elements that Fisher felt were critical.

 In my scenario Darwin visited his garden and at each of 15 different sites dug

up some of the soil, enough when thoroughly mixed to fill two clay pots. He labeled

one of each pair of pots  and the other  and set them side by side, left and right, inL R

the garden. Darwin then returned to the prepared pots with two bags of plant material,

one labeled  and one , a coin, and an experimental protocol, written on a small slipS C

of paper. The protocol read “At each pair of pots flip the coin. If it lands Heads, plant

a randomly chosen specimen from bag  in pot  and a randomly chosen specimenS L

from bag  in pot . If the coin lands Tails, plant a randomly chosen specimen fromC R

bag  in pot  and a randomly chosen specimen from bag  in pot . ” Following thisC L S R

protocol, Darwin planted the 15 pairs of pots.

Insert Table 1 about here

 After a suitable period of time Darwin returned once more to the garden and

measured the heights of each of the 30 plants. These heights, in inches, are given in

Table 1. The plant material in bag  was self-fertilized,  that in bag  cross-fertilized,S C

and the purpose of the study was to determine if, as Darwin  believed, the cross-
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fertilized material would show more vigorous growth. The final column of Table 1

gives the difference in heights of the two plants grown in each of the 15 matched pairs

of pots, the height of the self-fertilized specimen subtracted from the height of the

cross-fertilized one. For the most part, these differences are positive, consistent with

Darwin’s scientific hypothesis.

 By making the height comparison at the paired pot level, Darwin was

controlling for any differences in the favorability of growing  conditions from one pair

to another owing either to differences in the soil or in the subsequent locations of the

pot pairs in the garden. As described in my scenario, Fisher would have had Darwin

also randomize the plantings in each pair. In this way any remaining difference in

growth favorability between the pots in a pair would not bias the outcome of the

study. There is no evidence that Darwin did randomize the planting at each location.

And the absence of the randomization does not affect the statistical analysis Fisher

developed.

 What Fisher notes as critical to his analysis is that the 15 self-fertilized

specimens and the 15 cross-fertilized specimens were  from two largerandom samples

populations of those plant materials. Fisher proposed to test the null hypothesis of

identical distributions of height for the two populations against the alternative of a

greater mean height in the cross-fertilized population. It was to be a nonparametric

test, an alternative to the paired observations -test, as no assumption was to be madet

about the parametric form of the population distributions. Complicating the null and

alternative hypotheses about the population distributions of height is the implicit

assumption that they could be realized by fixing the growing environment at any one

of the 15 employed by Darwin.

 The average of the differences in height of the cross-fertilized and self-

fertilized plants, over the 15 growing environments, has the height of the cross-

fertilized specimen exceeding that of the self-fertilized one by 2.606667 inches. Does

a difference that large provide evidence of the superior growth potential of the cross-

fertilized material or should we expect differences of this magnitude, apparently
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favoring cross-fertilized material, to occur fairly often when randomly sampling from

identical growth potential populations?

 Fisher found an answer by this logic. In the first pair of pots, the first growing

environment, the randomly chosen cross-fertilized specimen achieved a height of 23.5

inches and the randomly chosen self-fertilized specimen a height of 17.4 inches. This

gave rise to a cross-fertilized minus self-fertilized difference in heights of 6.1 inches.

If the two population distributions of height had been identical, then it is equally likely

that a randomly chosen cross-fertilized specimen would have achieved a height of

17.4 inches and a randomly chosen self-fertilized specimen would have achieved a

height of 23.5 inches, when grown in this same environment. That outcome would

have given a cross-fertilized minus self-fertilized difference in heights of of 6.1�

inches. That is, under the null hypothesis the sign attaching to the 6.1 inch difference

in heights is as likely to be negative as positive.

 This null hypothesis result holds true, of course, for each of the 15 growing

environments. And because of the random sampling, the random determination of

sign takes place independently from environment to environment. Thus, Fisher was

able to argue that under the null hypothesis there were 2 or 32,768 equally likely"&

patterns of signs for the 15 differences in heights.

 Darwin observed one of these 2 patterns of pluses and minus, the pattern"&

given in the final column of Table 1. This particular pattern yielded an average

difference in heights of 2.606667 inches. The probability under the null hypothesis�

of an average difference in heights of  2.606667 inches or larger is the proportion�

of the 32,768 sign patterns that produce average differences in height of  2.606667�

inches or larger. How many are there? Fisher counted them and, as testimony to the

difficulty of the task, had to correct his initial result (Edgington, 1995). There are 866

sign patterns yielding an average difference in heights as large or larger than the

observed 2.606667 inches. Thus we have a -value for the hypothesis test ofP

)''¶$#Ç (') é !Æ!#'%$.
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 We refer to this nonparametric test of Fisher’s as a  test becausepermutation

the null hypothesis allows us to permute our randomly sampled observations among

the population distributions from which they were sampled. In the Darwin example

the distributions of the heights of a population of cross-fertilized plants and of a

population of self-fertilized plants, when grown in the environment provided by the

first pair of pots, were hypothesized to be identical. This allowed Fisher to permute

the pair of randomly sampled heights, 23.5 inches and 17.4 inches, between the two

population distributions.

 In 1935 it was totally impractical to determine the -value of theP

nonparametric permutation test by actually counting the number of  outcomes under

the null hypothesis that would be at least as favorable to the alternative as that

observed. Fisher, though, provided a way to approximate this -value by an easyP

computation. Continuing with the Darwin example, he computed the -statistict

> é é #Æ"%##
#Æ'!'''( � !

##Æ#"!'(¶"&°
where 22.21067 is the normal random variable variance estimate computed from the

15 height differences. Referring this -statistic to the distribution of Student’s -randomt t

variable with 14 d.f. yields an upper tail -value,  of 0.02512. ForP T > � #Æ"%##a b"%

this example, the parametric -test -value provides a close approximation to that oft P

the nonparametric permutation test. Fisher argued that the approximation would be a

good one for other sets of data as well.

The Randomization Test Introduced

 In a series of articles published in 1937-38, all bearing the general title

"Significance tests which may be applied to samples from any populations," Pitman

(1937a, 1937b, 1938) extended Fisher’s permutation test to other experimental

designs. The first of these (Pitman, 1937a) addressed what is probably the most

common comparative treatment design, that involving two independent treatment

groups.
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 Pitman assumes the design to be based on observations for random samples

from two case populations. The two samples might be the result of independently

sampling two distinct or  case populations, e.g., male and female lecturers in anatural

state university system, and then observing an attribute of interest on the sampled

cases, e.g., years of teaching experience.

 Alternatively, and this design was of greater interest to Pitman, a single

random sample might be obtained from one natural case population, e.g., freshmen at

one university, and then  to form two treatment groups. Afterrandomly divided

exposing cases in the two groups to different treatments, e.g., an orientation program

with no emphasis on alcohol moderation or one featuring alcohol moderation, a

response to treatment is observed, e.g., end-of-freshman-year self-reports of binge

drinking. As a result of the random division of the single random sample into two

treatment groups, the resulting treatment responses actually are those of two random

samples drawn from two different populations, one random sample is drawn from the

population of freshmen all of whom would have received the no mention of

moderation orientation and a second random sample is drawn from the population of

freshmen all of whom would have received the alcohol moderation orientation.

Populations of this kind I describe as  populations, they are the caseprospective

populations that would result if all cases in some natural population were to  be

exposed to a particular treatment (Lunneborg, 1999).

 The permutation test for two independent, randomly sampled treatment groups

has come to be known as the Pitman test and is rather more easily described than

Fisher’s paired-observations test. The Pitman test takes as its null hypothesis that the

two populations have identical distributions of response observations. The alternative

is that the two population distribution means differ and often specifies the distribution

with the higher mean.

 An artificially small example will be used to demonstrate Pitman’s test. Let’s

assume that our researcher’s random sample of university freshmen was made up of

just six students and that these students were then randomly divided into two
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treatment groups of three students each. Table 2 reports the results of this study, the

reports by the six students of the number of weekends in the freshman year during

which they consumed more than eight alcoholic drinks, our researcher’s definition of

an alcoholic binge.

Insert Table 2 about here

 The difference in the the mean number of binges for the two orientation groups

is

] � ] é � é "" � * é #RQ Q

"$�*�"" )�"#�(

$ $
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suggestive of less frequent bingeing in the alcohol moderation orientation population.

Is this a large enough difference to convince us that the population mean would be

smaller if the orientation featured alcohol moderation? Or would sample mean

differences of this magnitude or greater be relatively common when drawing random

samples of this size from population distributions that are identical?

 Pitman’s permutation test procedure follows from this line of reasoning.

Randomly sampling the  population distribution produced three scoresNo Moderation

a b9, 11, 13  and randomly sampling the  population distribution producedModeration

three scores 7, 8, 12 . Sampling three times from each of the two distributionsa b
yielded six scores 7, 8, 9, 11, 12 13 .a bÇ

 Now let’s assume that the  and  populationNo Moderation Moderation

distributions were identical and that randomly sampling from each three times

produced these same six scores, 7, 8, 9, 11, 12 13 . Because the populationa bÇ

distributions were identical, then any three of these scores could belong to the sample

from the  population distribution and the remaining three to that fromNo Moderation

the  population distribution.  The obtained result, 9, 11, 13  from the Moderation Noa b
Moderation Moderation distribution and 7, 8, 12  from the  distribution, was but onea b
of the possible  of those six observations into two samples of three each.permutations

In how many different ways can the six observations be permuted, forming two

subsets, three from  and three from ? The answer is givenNo Moderation Moderation

by application of a familiar combinatorial formula:
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a b a ba b8 � 8 x ' ô & ô % ô $ ô # ô "

8 x ô 8 x $ ô # ô " $ ô # ô "
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Under the null hypothesis, sampling from identical distributions, these 20

permutations of the observed set of six observation are  outcomes.equally likely

 How likely is that  would take a value of 2 or larger if the twoî ü] � ]RQ Q

population distributions were identical? The permutation test answer is the proportion

of the 20 equally likely permutations that yield a value of  of 2 orî ü] � ]RQ Q

greater. For this artificially small example it is convenient to display all 20 of the

permutations and the differences in means associated with them. These results make

up Table 3.

Insert Table 3 about here

 It is easily established from Table 3 that for 4 of the 20 permutations

î ü a b] � ] %¶#! é !Æ#!RQ Q  is 2 or greater. This gives a -value of , the probabilityP

under the null hypothesis of a result at least as favorable to the alternative hypothesis

as the one obtained.

 For realistic-sized samples, of course, the computation of the nonparametric,

permutation test -value was infeasible in 1937. Pitman showed how to approximateP

that -value with the one provided by the corresponding parametric test, theP

independent groups -test.t

 Pitman developed his two sample test having in mind that the natural

population or populations from which the two random samples of cases were drawn

would be large, perhaps infinite in size. In describing the test, however, he noted that

it also was applicable to experiments in which the two samples  theexhaust

population.  When do an experimenter’s two random samples exhaust a population?

The experiment referred to by Pitman most commonly takes the form of what I call

the two-group randomized available case design. A , i.e., a set oflocal population

available cases, is randomly divided into two treatment groups. Because of the

randomization, the resulting two groups not only exhaust the local population but are

random samples of that population. The permutation test inferences in this design are
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inferences about the local population, i.e., they are restricted to the set of available

cases.

 The distinction in range of inference is illustrated by revisiting the example of

the impact of a  orientation on binge drinking. If the students randomizedModeration

by our researcher to the two orientation treatments were a random sample from a

much larger or , e.g., the 3,000 freshmen at Central State University,global population

then the  hypotheses would be hypotheses about binge drinking in thatpermutation test

global population, as impacted by any  orientation. Would the meanModeration

number of reported binges  be smaller if all freshmen werein the freshman population

to receive the  orientation compared with what it would be if all receivedModeration

the  one?No Moderation

 However, if the students randomized between the two treatments were a set of

available cases, e.g., six volunteers from one Introduction to Psychology quiz section,

then the  hypotheses would be restricted to that set of cases. Wouldrandomization test

the mean number of reported binges  be smaller if all wereamong these six volunteers

to receive the  treatment, than it would be if all were to receive the Moderation No

Moderation one?  

 The distinction in range of inference is reinforced by a change in the name of

the hypothesis test. I follow here the practice of Edgington (1995) and refer to the

permutation test when applied to a randomly divided available set of cases as a

randomization test. Thus, Pitman’s first article introduced the randomization test and,

through its parentage in the permutation test, provided support for the use of the

parametric population -test as a way of approximating the null hypothesis test -t P

values of the randomization test. He also speculated in that article that the

randomization test would be of greater importance than the large population version

of the permutation test. In that randomized available case studies are much more

common than those in which cases are randomly sampled from large populations,

Pitman certainly was correct.

Local Causal Inference
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 The third of Pitman’s articles on permutation tests (Pitman, 1938) appeared in

the same issue of the journal  as one by Welch (1938). Both wereBiometrika

concerned with the practicality of extending the nonparametric permutation test to

studies in which cases, randomly sampled from one or more natural populations, are

randomized among more than two levels of treatment. How well could -groupk

permutation (or, randomization) test -values be approximated by those provided by aP

parametric analysis of variance?

 For a certain class of designs, Welch compared two null sampling distributions

for the -ratio. One null distribution was based on permuting observations among F k

identical populations and the other was the parametric, -random variable one, basedF

on randomly sampling  identical normal population distributions. He determined thatk

the two null distributions while quite similar would differ and that, translating into

modern terminology, the -values obtained from a normal-theory -distributionP F

appeared to provide better approximations to permutation test -values than toP

randomization test -values.P

 Noteworthy in Welch’s article is the attention he gave to the ranges of

statistical inference associated with the permutation and randomization tests and to

the distinction between statistical inference and . He recognized thescientific inference

limited range of statistical inference for the randomized available case design, i.e., to

those available cases. But he stressed the importance to scientific inference of the case

randomization that is characteristic of that design. Randomization of cases to

treatments provides the basis for the belief that an observed difference in response to

treatment is the result of differences in treatments, where that response difference is

large enough not be a chance result of the randomization. That is, we may draw causal

inferences as a result of the randomization of cases among treatments.

 Welch made it clear that although these causal inferences could be only local

from a statistical perspective, their scientific importance may have greater sway. The

researcher may know enough about the science driving the research to argue

successfully that the response difference caused by the differential treatment of these
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particular cases, e.g., water-deprived-mice in a San Francisco laboratory, hypertensive

patients from a Cleveland clinic, English-speaking sophomores enrolled in a first

course in psychology at a Minnesota college, could be reproduced among similar

cases, in other places at other times, given the same treatments. That is, scientific

inference about the generalizability of the results may be feasible where statistical

generalizability is not.

 Local causal inference, perhaps buttressed by scientific generalizability, is the

intent of randomized available case studies. Where the scientific argument is strong

enough the randomized case study may be sufficient to establish a generalizable

result. In other instances, establishing a causal effect in a local context may provide

the evidence needed to justify the expense of mounting a study employing random

samples of cases from carefully defined populations, to determine the generalizability

of the causal effect. Whether confirmatory of a scientific conjecture or a pilot study,

the randomized available case study and its associated potential for determining

treatment-response causal relations, at least for a local population, has become the

workhorse of empirical science.

 Over interpretation of the Normal-Theory Approximation

 By the late 1930s, then, a randomization model for the statistical analysis of

randomized available case studies had been established. Computational difficulties

precluded the direct tabulation of null hypothesis reference distributions for treatment

comparison statistics but those distributions could be approximated, researchers were

assured, by the probability distributions of the appropriate  and  random variables. Itt F

is important to remember that the randomization test reference distribution eschews

sampling from any global population, not just those with normal response

distributions.

 As a result of the useful -value approximations provided, the design andP

analysis of randomized available case studies have been incorporated into the analysis

of variance. Randomization of cases is generally regarded as justifying the analysis of

variance.
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 Some experimental design texts make explicit the approximation basis for the

linkage. For example, Box, Hunter and Hunter (1978) wrote with respect to the two-

treatment comparison, “ the randomization reference distribution is usuallyÉ

approximated reasonably well by the appropriately scaled  distribution. Hence,t

provided that we randomize, we can employ -tests as approximations to exactt

randomization tests, and we will be free of the random sampling assumption as well

as the assumption of exact normality.” (p. 96) and they repeated this message with

respect to multiple-treatment comparisons, “Thus, as before, the normal theory test

can be regarded as an approximation for the randomization test, which is its ultimate

justification.” (p. 188).

 More recently Maxwell and Delaney (1990), in a chapter titled Introduction to

the Fisher Tradition, used data from a hypothetical randomized blocks study with

twins to demonstrate a near-agreement in randomization test and -test -values andt P

went on to conclude, more generally, that “ the close correspondence between theÉ

results of randomization and normal theory-based tests provides a justification for

using the normal theory methods regardless of whether subjects are in factÉ

randomly  from a population.” (p. 50).sampled

 Other experimental design texts, e.g., Cobb (1997), offer randomization as a

justification for normal-theory analysis, without any reference to approximating a

randomization test. Still others, e.g., Winer, Brown, and Michels (1991), treat

randomization solely from the point of view of increasing experimental control,

ignore it as the basis for statistical inference in available case studies, and justify the

analysis of variance on the assumption that a group of available cases “is considered

by the experimenter to be the equivalent of a random sample from the population of

interest.” (p. 74).

 However randomization is regarded, experimental design texts encourage the

over interpretation of the results of the application of normal-theory methods to the

analysis of randomized available case studies. This is inadvertent, the result of

offering a uniform approach to the analysis of two kinds of studies, those in which our
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random samples of cases exhaust a local population, i.e., randomized available case

studies, and those in which we randomly sample relatively small numbers of cases

from very large, global populations.  These over interpretations are implicit in the

worked examples and in the problems set for readers and take three forms.

  First, the distinction between local andGlobal Population Hypotheses Tested.

global populations is nearly always ignored when statistical hypotheses are stated or

tested. Analysis of variance hypotheses are hypotheses about the means of treatment

response scores for very large, essentially infinite case populations. And the -valueP

for a treatment comparison is interpreted in terms of a  fornull sampling distribution

the treatment comparison statistic, the distribution of values of that statistic over all

possible samples from these very large populations when the distribution of response

scores for those populations are restricted by a null treatment hypothesis. These

samples would necessarily include a large number of cases who did not participate in

our study and who would contribute treatment responses different from those actually

observed.

 The randomization test treatment comparison hypotheses that are most like

those in the analysis of variance are hypotheses about the mean response to treatment

for a relatively small number of cases, those who received one of the treatments being

compared. And the -value for a randomization test treatment comparison in theP

randomized available case design is based on a  for thenull reference distribution

treatment comparison statistic, the distribution of values of that statistic if those

responses to treatment actually observed were permuted among treatments, in all the

ways possible under a null treatment hypothesis.

 While the -value for a randomization test may be approximated by that for aP

t F-test or -ratio it has different interpretations in the two traditions. The two

interpretations are confused when the global population hypotheses of the analysis of

variance are inappropriately applied to the randomized available case study.

  The typical analysis of varianceGlobal Population Parameters Estimated.

yields more than -values. Students, by their texts, and researchers, by their editorialP
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reviewers, are encouraged to report not only estimates of contrasts among means but

estimates, as well, of the standard errors ( s) for those estimates and of confidenceS.E.

intervals ( s) for the contrasts. The conventional estimates of  s and s, thoseC.I. S.E. C.I.

taught by our experimental design texts and incorporated into popular statistical

computing packages, assume random samples from very large populations with

response distributions that are homoscedastic and normal. The robustness of the -P

value, however, does not carry over to these accuracy assessments. The large

population estimates of s and s are not appropriate to the randomized availableS.E. C.I.

case design.

   The scope of analysis of varianceExtension to Nonrandom Factors.

hypothesis testing has been extended usefully, at least in -value estimation, toP

include randomized treatment factors. Frequently, researchers attempt to extend the

envelope of applicability even further, to the statistical assessment of factors which in

the design have neither a random sampling nor a randomization basis. As an example,

it is common to encounter tests of a sex-effect or of a sex-by-treatment interaction in

research where the cases have not been randomly sampled from separate male and

female populations nor, clearly, have they been randomized to the two sex levels.

There is no probabilistic basis for such tests. Even where sex is used as a blocking

factor, male and female cases having been randomized separately and independently

among levels of a treatment factor, no sex-difference test is warranted. Not every

factor in a randomized available case design supports statistical inference, only

treatment factors, those with cases randomly distributed over the factor levels.

 In importing wholesale those analysis of variance computations appropriate to

large population samples researchers misinterpret the outcomes and implications of

the randomized available case study. This is the misuse of the population model of

inference addressed by Ludbrook and Dudley 1998 .a b
  Before an ANOVA is carriedImpact of ANOVA Distributional Assumptions.

out it is customary to verify that the observed data are consistent with the

distributional assumptions of the ANOVA model. For between groups designs
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apparent violations can lead to the transformation of the response variable.

Subsequent hypothesis testing, of course, concerns the population distributions of the

transformed variable. Such hypotheses may be a poor fit to those substantive

hypotheses that motivated the study. The ANOVA for within case or repeated

measures designs has its own distributional requirements and psychologists have been

active participants in the quest for better ways of adapting the within-case ANOVA to

apparent violations of those assumptions.  

 These distributional assumptions are grounded in randomly sampling global,

i.e., normal or multivariate normal, population distributions. Their apparent violation

is dealt with no differently in our texts and research literature when they are found in

local population, available case studies. Otherwise the appropriateness of the ANOVA

P P-value as an approximation to the randomization -value presumably would be

compromised.

 Adoption of the ANOVA model as a means of approximating a randomization

test -value leads to testing distributional assumptions that are irrelevant to localP

causal inference and may result in transforming response measures away from their

natural, interpretable metrics.

 Computational Feasibility of Randomization Inference

 The computational difficulties that precluded the application of randomization

inference to available case studies in the 1930s have been overcome. All researchers

now have on their desktops computing power sufficient to create the null reference

distributions needed for randomization tests. And the statistical software is available

to make the task a relatively easy one. We no longer need to approximate -valuesP

from normal-theory statistics and, in so doing, risk confusing global or population

inference with local inference.

 . It is customary to distinguish two approaches toExact Randomization Tests

obtaining a null reference distribution for a treatment comparison statistic. If we visit

each randomization (or, rerandomization) of the observed responses that is possible

under the null treatment hypothesis, recomputing the treatment comparison statistic
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for each randomization, the result is an  reference distribution. That is, when weexact

compute a -value by referring the observed value of the treatment comparisonP

statistic to that distribution we obtain an exact, not an approximate, -value for theP

hypothesis test.

 As an example, we randomize ten available cases five apiece to two treatment

groups, expose the members of the two groups to two different treatments (  and ),A B

and measure their responses to treatment. The randomization test null treatment

hypothesis is that the distribution of measured responses to treatment for our ten cases

would be the same if all had received treatment  as it would be if all had receivedA

treatment . Under that hypothesis all possible divisions of the ten observed responseB

scores into five from distribution  and five from distribution  are equally likely.A B

There are  such possibilities and it would require very littleQ é "!x¶ &x ô &x é #&#a b
computing time to form all of them systematically and to compute the treatment

comparison statistic in each. These would make up the exact null reference

distribution against which we would evaluate our obtained treatment comparison

statistic.

 Doubling the size of the two treatment groups would increase substantially the

number of possible rerandomizations, . Rather thanQ é #!x¶ "!x ô "!x é ")%Ç (&'a b
inventory all possible rearrangements of the data, clever timesaving algorithms have

been devised for some treatment comparison statistics that identify just those

rerandomizations for which the treatment comparison statistic would take at least as

extreme a value, relative to the null hypothesis, as that actually observed, e.g.,  

Mehta and Patel (1995). These algorithms, in effect, produce exact -values from justP

the tails of a null reference distribution.

 . If we double theExact to Monte Carlo Accuracy Randomization Tests

treatment group sizes a second time the number of rerandomizations of the observed

responses possible under a null treatment effect hypothesis is staggeringly large,

Q é %!x¶ #!x ô #!x é "$(Ç )%'Ç &#)Ç )#!a b . For moderate to large studies the

computing time required to visit all rerandomizations or, our statistic permitting, even
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to identify and inventory the tails of the reference distribution is likely to be longer

than is acceptable. Where this is true we can approximate the null reference

distribution by computing the treatment comparison statistic for a series of randomly

chosen rerandomizations of the observed responses.

 The -value computed from this Monte Carlo approximated referenceP

distribution can be made arbitrarily close to the exact -value, that based on the exactP

reference distribution, by including enough randomly chosen rerandomizations in the

sequence. How close to approximate the exact -value will depend both on theP

magnitude of the -value and the use to which it is to be put. One strategy (Good,P

1999) is to obtain a preliminary estimate based on a random sequence of 500 to 1,000

rerandomizations and then to refine this estimate by increasing the sequence to 5,000

or 10,000 rerandomizations where greater accuracy is wanted. Edgington (1995) and

Manly (1997) give tables relating the size of the Monte Carlo reference distribution to

the accuracy of the resulting -values. Roughly, if the exact -value for a test is 0.05,P P

then using a reference set based on 5,000 rerandomizations will yield a -value thatP

falls between 0.042 and 0.058, 99% of the time. And, if the exact -value is 0.01, thenP

a 10,000 element reference distribution will give a value between 0.007 and 0.013,

again 99% of the time.

 The creation of exact reference distributions requires specialized

computational routines to carry out the systematic identification of all possible

rerandomizations.  Specialized routines are needed as well to implement tail-filling

algorithms and these algorithms are limited to certain treatment comparison statistics.

By contrast, Monte Carlo approximations to null reference distributions can be formed

using only the standard tools available in most statistical computing packages. They

can be formed whatever the researcher chooses as a treatment comparison statistic.

For these reasons Monte Carlo approximated reference distributions, rather than exact

ones, are of central importance to statistical inference for the randomized available

case study.

Examples of Randomized Available Case Study Designs
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 In the balance of this paper I illustrate the application of rerandomization in

drawing local causal inferences from a range of randomized available case designs.

An emphasis in the illustrations will be the linkage between the randomization

scheme used in the design and the subsequent testing of treatment effect hypotheses.

Completely Randomized Two Treatment Groups Designs

 The completely randomized, two-groups design is the most straightforward

randomized available case design, and perhaps the most common. Complete

randomization  is a strategy whereby the full or complete set of available cases isa bCR

randomized among two or more treatment groups. The  design contrasts, forCR

example, with the randomized blocks design in which the available cases are first

formed into two or more blocks, homogenous with respect to some characteristic, and

each block of cases then independently randomized among treatments.

 In a study reported by Regan, Williams and Sparling (1977) shoppers in a mall

were recruited into either a  or  treatment group. In both instances theGuilt Control

shoppers were approached and asked to use the experimenter’s camera to photograph

the experimenter. In the  treatment the shopper was thanked but in the Control Guilt

treatment the shopper was led to believe (only for the duration of the shopper’s

participation in the experiment) that the shopper damaged the camera. Shopper-

subjects then encountered the experimenter’s accomplice who was clearly having

trouble with a disintegrating shopping bag. The shoppers either  or Helped Did not

help the accomplice.

 The 40 shoppers were not a random sample from some larger population; they

were the first 40 who, when approached, agreed to photograph the experimenter. They

were, however, completely randomized into two groups of 20 by a strategy of this

kind: In advance of approaching shoppers, the experimenter prepared a 40-element list

consisting of a well-shuffled 20  and 20 . As the th shopper agreed toGuilts Controls k

participate he or she was assigned to the treatment level identified by the th elementk

on the list.  
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 The relevant data for this study are these. Among the 20 shoppers randomized

to the  treatment there were 3 helpers and 17 non-helpers while among thoseControl

randomized to the  treatment there were 11 helpers and 9 non-helpers. If all 40Guilt

shoppers (the local population) had been exposed to the  treatment theyControl

would define one (local) population distribution of helpers and non-helpers and if all

40 had been exposed to the  treatment they would define a second populationGuilt

distribution of helpers and non-helpers.

 The randomization null treatment effect hypothesis is that the two 40-element

population distributions, each a mixture of helpers and non-helpers, would be

identical. The alternative, substantive hypothesis is that the  populationGuilt

distribution would include more helpers than the  distribution.Control

 Under the null treatment hypothesis of identical population distributions the

randomization of cases could result in any 20 of the observed 14 helpers and 26 non-

helpers coming from the  distribution and the remaining 20 from the Control Guilt

distribution. Each of these outcomes would have the same chance of occurring. For

example, to focus on a pair of possibilities, it is just as likely under the null hypothesis

that the randomization would yield 4 helpers from the  distribution and 10Control

from the  distribution as that it would yield 10 helpers from the Guilt Control

distribution and 4 from the . By contrast, under the alternative hypothesis theGuilt

researcher would expect to see more helpers from the  distribution than from theGuilt

Control one.

 The researcher’s randomization of the shoppers, we noted earlier, yielded 3

helpers from the  and 11 helpers from the  population distributions. TheControl Guilt

result is in the direction of the alternative. Does the result provide strong evidence in

support of the alternative or is there a good chance that evidence of the same or

greater strength could emerge under the null hypothesis? To answer the question we

need to examine the null reference distribution for an appropriate treatment

comparison statistic. We could take as our statistic the difference in the number of

helpers in the two treatment groups, , and= é 8 � 8 la b a bHelpers Guilt Helpers Controll
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ask whether the observed difference, , is large enough to provide statistical= é )

support for the substantive hypothesis that the  manipulation leads to moreGuilt

helpers among these shoppers. Our statistic might be more easily interpreted if we 

were to divide it by 20, converting it into a difference in the proportions of helpers in

the two treatment groups, . The statistical= é : � : la b a bHelpers Guilt Helpers Controll

consequences, it should be noted, of the two statistics would be identical. They are

reference distribution equivalent statistics. That is, they would order any set of

rerandomizations of the observed data in exactly the same way.

 As noted  above, the number of equally-likely-under-the-null rerandomizations

of the observed responses to treatment, , is quite large and I will not%!x¶ #!x ô #!xa b
attempt to form the exact null reference distribution. Rather, I’ll use the S-Plus

permutationTest function (MathSoft, 1998; Hesterberg, 1999) to generate a

Monte Carlo approximation. Figure 1 is the log of the interactive computing.

Insert Figure 1 about here

 The response vector  has as its sequential elements 3 ‘1’s, 17 ‘0’s, 11helpv

‘1’s, and 9 ‘0’s. The first 20 elements code the helpers and non-helpers in the Control

treatment group and the final 20 elements do the same for the  cases. TheGuilt

treatment vector, , is aligned with the response vector, 20 ‘C’s followed by 20trtv

‘G’s.

 The  function has two mandatory and several optionalpermutationTest

arguments. The mandatory arguments are a vector whose elements are to be randomly

shuffled (or an array whose rows are to be randomly reordered) and a statistic to be

computed before the vector is shuffled and again following each shuffling of the

vector. Together they will comprise the Monte Carlo null reference distribution for the

statistic. The shuffled vector, in my use of the function, codes the treatment group to

which a case is randomized or, equivalently, the population distribution to which a

response is to be attributed. In this first application the vector to be shuffled is trtv

and the statistic to be computed is the difference between the proportion of helpers in

the  and  samples: Guilt Control mean(helv[trtv=="G"])-
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mean(helv[trtv=="C"]). Optional arguments are supplied here to specify that

the test is not two-sided and that the number of rerandomizations of treatment

assignments to be included in the Monte Carlo reference distribution is other than

1,000. My alternative hypothesis is that the proportion of helpers would be greater in

the  population distribution than in the  one so I want a one-sided test.Guilt Control

For the -value to correspond to the proportion of the reference distribution that is atP

least as large as the observed value of the statistic I specify

alternative="greater".  I want the reference distribution to consist of the

observed value of the treatment comparison statistic plus the values of that statistic

computed from  rerandomizations of the treatment assignments giving a totalB=999

of 1,000 null hypothesis values for the statistic. A final optional argument trace=F

asks that  not fill my computer screen with updated reports on just which of theS-Plus

rerandomizations it is currently processing!

 The  returns its results as an object, in this example onepermutationTest

named . A summary of that object gives the  value of the treatmenthnh Observed

comparison statistic as well as some descriptive statistics for the reference

distribution, including the -value for the permutation test. The value of our treatmentP

comparison statistic is 0.40, the difference between the proportion of helpers in the

Guilt Control treatment group ( ) and that in the  group ( ).""¶#! é !Æ&& $¶#! é !Æ"&

Exactly 14 of the 999 rerandomizations of the treatment assignment vector resulted in

values of the statistic of 0.40 or larger and, hence, to the reported -value of 0.015.P

 My Monte Carlo approximated -value was close to 0.01. Were the formalP

rejection of the null hypothesis to depend on the -value for the hypothesis test fallingP

below 0.01, a more accurate approximation might be desirable. I repeated the

permutationTest command, increasing the number of rerandomizations to

B=5000 and obtained a -value of . As the two randomP !Æ!!)(*) é %%¶&!!"

sequences of rerandomizations were independent of each other I may as well pool the

two results to get an approximation based on 5,999 randomly chosen

rerandomizations, .a b"% � %$ � " ¶'!!! é !Æ!!*''(



Random Assignment of Available Cases - 25

Multiple Treatments and Multiple Comparisons

 If cases are randomized to two treatments, there is but one treatment

comparison to be made; however, multiple treatments invite multiple comparisons.

Consider this example, reproduced as Data Set 50 in Hand, Daly, Lunn, McConway &

Ostrowski (1994) and described therein as follows. “A double-blind experiment was

carried out to investigate the effect of  the stimulant caffeine on performance on a

simple physical task. Thirty male college students were trained in finger tapping. They

were then divided at random into three groups of 10 and the groups received different

doses of caffeine (0, 100, and 200 mg). Two hours after treatment, each man was

required to do finger tapping and the number of taps per minute was recorded. Does

caffeine affect performance on this task? If it does, can you describe the effect?”  (p.

40). The finger tapping rates are given in Table 4.

Insert Table 4 about here.

 There is no suggestion that the 30 male college students were a random sample

from a well-defined case population. Almost certainly they were available cases,

student volunteers. Their randomization among treatment levels provides the

mechanism, though, for local causal inference.

 I'll try to answer theFirst treatment comparison: caffeine Vs no caffeine. 

question posed by making two treatment comparisons. These may not be the

comparisons another analyst would choose. The first comparison is directed at

providing one answer to the question “Does caffeine cause an increase in tapping

speed?” The randomization null treatment hypothesis associated with this substantive

hypothesis is that three local population distributions of tapping speeds ( , inR é $!

each) are identical. They are the tapping speed distributions of these 30 students, if all

were to have received the 0 mg, the 100 mg, or the 200 mg caffeine treatment. The

alternative is that, while the 100 mg and 200 mg distributions may be identical, the 0

mg distribution includes slower tapping speeds.

 The test of this first null hypothesis will be based on a comparison of the

performances of the 20 students receiving some amount of caffeine with those of the
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10 students receiving none. How shall I do that? The natural thing to do, given our

training in psychological statistics, is to compute the two means and take the

difference between them. The mean of the 0 mg group estimates the mean of the

population distribution at 0 mg caffeine treatment. The mean for the 20 students in the

100 mg and 200 mg groups pools observations from the other two population

distributions to provide an estimate of their common mean. However, for purposes of

illustration, I’ll express a concern that, because either of the population response

distributions might have at least one long tail, the mean may be an inappropriate

assessment of the  of response. So I choose as my treatmenttypical magnitude

comparison statistic the difference in  for the  and 20% trimmed means Caffeine No

Caffeine groups. That is, I’ll trim from each group of tapping speeds the smallest and

largest 20% before computing the means.

Insert Figure 2 about here

  The upper portion of Figure 2 reports the randomization analysis for the

Caffeine/No Caffeine comparison. The treatment responses, tapping speeds, are

arranged in the tapspeed vector to coincide with the treatment assignments coded

in a second vector, . caff The 20% trimmed mean tapping speed for the Caffeine

students ( ) is 2.667 taps/min faster than that for the  studentscaff>0 No Caffeine

( ). Is that a big difference? Under the null treatment hypothesis all divisionscaff==0

of the 30 observed tapping speeds, 10 from each of the three  populationCaffeine

distributions, had the same chance of being observed under the randomization strategy

employed in this study. The call to permutationTest provides a Monte Carlo

approximation to the null reference distribution for my treatment comparison statistic

by rerandomizing the treatment assignment vector, , 999 times and computingcaff

the difference in trimmed means for each rerandomization.

 The probability of observing a difference in trimmed means favoring the

combined  groups by at least 2.667 taps/min–if the local population tappingCaffeine

speed distributions for the three treatments are identical–is of the order of 0.004.



Random Assignment of Available Cases - 27

Many of us would conclude, on this evidence, that the administration of caffeine led

to increased tapping speeds among these 30 male collegians.

 My secondSecond treatment comparison: 100 mg Vs 200 mg caffeine: 

treatment comparison for this three-treatment design is intended to answer this

question, “Does a larger dose of caffeine lead to faster tapping than a smaller dose?”

That is, I'm interested in comparing the tapping rates among these students when they

receive either 100 mg or 200 mg caffeine.

 The second null treatment effect hypothesis is that the tapping speeds observed

for the 100 mg treatment students and those for the 200 mg students are random

samples from two identical (local) population distributions. The alternative is that

tapping rates in the 200 mg population distribution are higher than those in the 100

mg population.

 Again, I'll use a difference in 20% trimmed means as the treatment comparison

statistic. The observed difference, as reported in the lower portion of Figure 2, is

1.833 taps/min higher for the 200 mg group, in the predicted direction.  Does that

difference provide strong evidence in support of the substantive hypothesis or is it a

reasonable probability under the null hypothesis?

 Under the null treatment hypothesis any 10 of the 20 tapping speeds observed

for the 100 mg and 200 mg students could have come from the 100 mg population

distribution and the other 10 from the 200 mg population distribution. I develop a

(Monte Carlo) null reference distribution for my treatment comparison statistic by

asking the permutationTest function to find the value of that statistic for 999

randomly chosen rerandomizations of the treatment assignments making up the caff

vector. Our second null hypothesis, however, restricts these rerandomizations.

Observations from  the 100 mg and 200 mg population distributions are exchangeable

between those two distributions, but those observations are no longer exchangeable

with ones from the 0 mg distribution. The optional  argument is used bygroup

permutationTest to control exchangeability. It takes as its value a vector the

same length as the treatment assignment vector with elements coding exchangeable
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treatment assignments. In this example I use a vector  coded ‘1’ for the 0shufgrp

mg elements of  and ‘2’ for both 100 mg and 200 mg elements. This insures thatcaff

treatment assignments can be exchanged, on rerandomization, between 100 mg and

200 mg, but not between either of those and 0 mg.

 Based on the resulting reference distribution we see that there is a 5-6%

chance that, when sampling from identical 100 mg and 200 mg local population

distributions, the 20% trimmed mean for the 200 mg sample will exceed that for the

100 mg sample by at least 1.83 taps/min.

 For the second hypothesis test, as for the first, the local population is defined

by the 30 student subjects. The original randomization insured that the treatment

groups were all random samples from those 30 cases.

 My history of the randomization test emphasized its origins as a distribution-

free alternative to the - and -tests. The  and  examples serve tot F Guilt Caffeine

establish that the randomization test is not restricted to testing hypotheses about the

population means of continuously-varying response measures.

Randomized Block Designs

 The second  randomization test illustrated that the rerandomizationsCaffeine

needed for the reference distribution had to be faithful to the particular null treatment

hypothesis as well as to the original randomization strategy.

 The  and  studies are both examples of an all-cases-at-once orGuilt Caffeine

complete randomization strategy. This is not the only randomization strategy

employed by available-case researchers. One important alternative is first to form the

available cases into two or more blocks, on the basis of some attribute of the cases,

and then independently to randomize each block of cases among treatment groups.

The blocking attribute is one that is expected to influence the response attribute. Thus,

in the  study the 30 student volunteers might have been formed into blocksCaffeine

based on their pretreatment tapping speeds prior to being randomized among
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treatment levels. The randomized blocks ( ) design can give us increasedRB

experimental and statistical control.

 At the experimental level, randomizing within blocks can insure that the

blocking attribute is not confounded with treatment. Each treatment group can be

made up of the same blend of cases with respect to their blocking attribute levels.

 At the statistical level, randomizing within blocks can increase our sensitivity

to a difference in response to treatments. Where blocking level influences the

magnitude of treatment response, as it will if the blocking attribute is well chosen,

then the treatment responses will be more homogeneous within a block than across

blocks. For the rerandomization analysis of randomized blocks this is important; the

null and substantive hypotheses take the blocks of cases as their local populations. For

a block of cases, then, there is a population distribution of responses for each

treatment level. Against the low variability within these population distributions any

differences in, say, location among the distributions are more likely to be identified

than they would against the more heterogeneous population distributions of a

completely randomized study.

 The  design impacts how we carry out the rerandomizations needed to formRB

reference distributions for our treatment comparisons. We must be careful to limit our

rerandomizations to those that rerandomize cases within blocks and, hence, maintain

the block structure within treatment groups. These restrictions on the

rerandomizations reduce the sizes of null reference distributions. The use of 10 blocks

of three students, for example, rather than a single block of 30 students would reduce

the sizes of the two reference distributions to

è � è �$x #x

#x ô "x "x ô "x
é &*Ç !%* é "Ç !#%
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 and

for the  and  comparisons. Here theCaffeine/No Caffeine 200 mg/100 mg Caffeine

change in reference distribution sizes would not be critical. Each provides scope

certainly for testing at the 0.01 level. When planning  studies, however, it isRB
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important to insure that the overall number of cases is large enough to support

inference for focussed treatment comparisons which involve only some of the cases. A

simulation, similar to a power analysis for random global population samples, can

help to determine the number of cases to be recruited into a study. Lunneborg (1999)

provides an example.

Insert Table 5 about here

 In the  study summarized in Table 5 each block consists of exactly twoRB

experimental units. The data are from a plant-growing study reported in Mead,

Curnow and Hasted (1993) but, having already visited Darwin’s garden, I’ve invented

a psychologically more interesting scenario for the data. The cases are 10 pairs of

identical twins, aged 4 years 6 months to 5 years 6 months. The response data are

scores on an  task, higher scores indicating greater attention. Each pair ofAttention

twins is randomized. One twin completes the task with Mother Absent, the other with

Mother Present. Does Mother Present increase attention? Figure 3 is my S-Plus

dialog.

Insert Figure 3 about here

 The three 20-element vectors, atn mothr pairs, , and  are aligned with one

another and contain, respectively, the attention score, the randomized treatment level

(  for Mother Present,  for Mother Absent), and the twin-pair identification (P A 1

through ) for each of the 20 children in the study. My treatment comparison statistic10

is the mean of the differences in attention scores for the ten pairs of twins, Mother

Present minus Mother Absent: mean(atn[mothr=="P"]-

atn[mothr=="A"]). Its observed value is 1.7.

 To help decide whether that is a large enough difference in favor of  Mother

Present as to be unlikely solely because of the randomization of the twins within each

pair, i.e., in the absence of any Mother Present effect, the permutationTest

function is used once again to develop and evaluate a Monte Carlo approximation to

the null reference distribution for my observed mean difference statistic.
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 In this application the elements of the  vector are shuffled repeatedly tomothr

form a random sequence of  999 vectors, each used in the computation of another

value of the treatment comparison statistic. However, each shuffling or

rerandomization of treatment assignment must be constrained to take place separately

and independently within blocks. This is accomplished again with the group

argument in the  call. Here, the elements of the  vectorpermutationTest pairs

identify the blocks (twin pairs) to which the corresponding elements of mothr

belong. By specifying  only those elements of  with a commongroup=pairs mothr

block-identifier in  are shuffled together. In this way each twin-pair ispairs

independently rerandomized.

 Including the obtained mean attention difference score, only 27 of the 1,000

rerandomizations appropriate under the null treatment hypothesis lead to test statistics

with values of 1.7 or greater, .P é !Æ!#(

 Restricted randomization ( ) represents a specialRestricted randomization. RR

form of the  design. Here some cases are eligible for randomization to some but notRB

to all treatments. They can be thought to form blocks corresponding to the range of

treatments available to them and would be rerandomized, under a null hypothesis,

only among those treatments contributing to that null hypothesis and for which they

were eligible at the actual randomization.

 Independent randomization ( ) is a limiting formIndependent randomization. IR

of . Here each case is randomized independently, a block of size one. IndependentRB

randomization leads to variation in initial treatment group sizes and these initial group

sizes will not be preserved from one rerandomization to another. Because of the lack

of control over group sizes  designs should be used only sparingly.IR

Within Case Designs

 The designs illustrated thus far are between groups (of cases) designs. Each

case is randomized to a single treatment and treatment comparisons, perforce, are

comparisons between cases. Randomization and rerandomization also work for within

case  designs. In these designs each available case receives all treatments ona bWC
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offer and we make our treatment comparisons within cases. Rerandomization tests for

WC designs arise as the result of the randomization of cases among alternative

sequences of treatments. Usually these sequences are temporal though not always,

e.g., in agricultural field trials they may be spatial. For increased experimental control,

the cases may be blocked before they are randomized to treatment sequence, e.g.,

cases recruited into a study over a long period of time may be blocked by time of entry

to protect against a confounding of time of entry with treatment sequence assignment

that might result from complete randomization.

 As the case receives several treatments, its response to treatment(s) can be

conceptualized as multivariate, a vector of  responses, one element for each position

in that case’s treatment sequence. It is the local population distributions of these

vector-valued treatment responses that are the subject of within case null and

substantive hypotheses. I’ll describe this first in the context of the simplest

randomized available case  design.WC

 The two-treatment, two-period design. Cases in  this design receive one of two

treatments in the first of two periods and then are switched or  to the othercrossover

treatment in the second period. Sometimes known as the design, availableAB/BA 

cases are  between two treatment sequences, Treatment  followed byrandomized A

Treatment  or Treatment  followed by Treatment .B B A

 Let’s assume that, in a particular study, the twenty cases available were

randomized, ten to the  sequence and ten to the  sequence. The 20 cases define aAB BA

local population, as they would for a between groups study. At the completion of the

study each case provides an ordered bivariate response, the response to the first period

treatment followed by the response to the second period treatment. If all 20 cases were

to receive the  sequence they would generate one population distribution for theAB

bivariate response. If all 20 cases were to receive the  sequence they wouldBA

generate a second population distribution. The study itself provides a random sample

of 10 observations from each of these two population distributions.
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 The null treatment effect hypothesis is that the two bivariate population

distributions are identical. Under this hypothesis the bivariate observations are

exchangeable between the two distributions, subject only to the consideration that 10

were sampled from one distribution and 10 from the other. Our alternative hypothesis

depends, of course, on the purpose of the study. We might predict that Treatment B

will produce larger responses than Treatment . Such a prediction serves as the basisA

for a treatment comparison statistic, perhaps

= é "¶#! �a b a b a bð ñ" "Period 2 Period1 AB Period 1 Period 2 BA� l � l  ,

the average of the  responses.a bB A�

 A null reference distribution for the treatment comparison statistic can be

produced if we reattribute the bivariate responses to treatment sequence population

distributions, either in all possible rerandomizations or for a long#!x¶ "!x ô "!xa b
sequence of randomly chosen rerandomizations, and recompute the statistic for each

rerandomization.

  A common research design inThe two-treatment, multi-period design.

psychology calls for subjects to respond to a sequence of stimuli belonging to two

classes, the researcher’s interest in contrasting the accuracy or latency of responses to

the two classes. The sequence usually is of some pseudo-random form to preclude

subjects developing response strategies. Randomizing available subjects among

alternative sequences can provide the basis for rerandomization-based local causal

inference.

 For example, 30 subjects might be randomized 15 to each of two 96-stimuli

sequences, perhaps  and , where  and  designateabbababa baba baababab abab a bÉ É

stimuli of two distinct classes. Our null treatment (stimulus) effect hypothesis would

be that the two population distributions  of 96-element vector-valueda bR é $!

responses are identical. We could rerandomize the 30 observed vectors under that

hypothesis, recomputing the appropriate comparison statistic for eacha/b 
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rerandomization to provide a null reference distribution against which to evaluate the

statistical significance of an observed stimulus comparison statistic.

 In the two-treatment design the null treatmentMulti-treatment comparisons. 

hypothesis does not impose any constraints on the rerandomizations; they can follow

the original randomization strategy. With the randomization of cases among

sequences of three or more treatments, however,  this will not be the case. Table 6 is

taken from Data Set 11 in Hand et al. (1994) and gives the (average) Flicker Fusion

Frequencies ( ) for nine volunteer subjects in a three-period three-treatment study.FFF

Insert Table 6 about here.

 The nine subjects were randomly matched with nine predetermined three-drug

sequences. As there are six possible sequences of three drugs the design was an

unbalanced one; three sequences appeared twice and the other three only once each.

 The purpose of the study was to evaluate the effectiveness of a new

antihistamine drug, Meclastine. It was anticipated that Meclastine should produce less

drowsiness than an older antihistamine, Promethazine. The design of the study

suggests two treatment comparisons:

 (1) . Meclastine should produce higherMeclastine  vs. Promethazine a b a bA C

FFFs than Promethazine. The null hypothesis is no difference.

 (2) . The null hypothesis, again, is noMeclastine  vs. Placebo a b a bA B

difference. The alternative hypothesis, for me, is that Meclastine should produce

lower s as there is no suggestion that any antihistamine would result in increasedFFF

alertness. But, some researchers would prefer a non-directional alternative.

 What does the first null treatment hypothesis imply about the exchangeability

of trivariate observations,  among the six populationa bDay 1, Day 2, Day 3 Ç

distributions, one for each treatment sequence? To answer the question let’s focus on

one particular observation and how it would enter into the computation of the first

treatment comparison statistic. Subject 2 was randomized to the sequence

Promethazine-Meclastine-Placebo or  and produced a response vectorCAB
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a b#&Æ)(Ç #'Æ'$Ç #'Æ!! . From what population distributions, other than that for ,CAB

could this vector have been sampled?  Subject 2’s contribution to the comparison of

Meclastine and Promethazine is the difference  in sa b a bA C Day 2  Day 1 FFF� �é

and, correctly, takes no account of the   as the response to the Placebo Day 3 FFF Ba b
plays no role in the first hypothesis. However, if this vector were to be reattributed to

any of the population distributions , , , or  the (Placebo)BCA CBA ABC BAC Day 3 

response would be drawn, inappropriately, into a comparison of treatments  and .A C

For purposes of testing the first hypothesis the vector contributed by Subject 2 can be

rerandomized only to the treatment sequences  or .CAB ACB

 Similar analyses of other treatment response vectors would establish that, for

purposes of building a null reference distribution for the first treatment comparison,

vectors are exchangeable between population distributions  and , betweenCAB ACB

distributions  and , and between distributions  and .ABC CAB BAC BCA

 This restriction on available rerandomizations leads us to rerandomize cases in

this design as if the cases had been blocked for the original randomization. Subjects 1,

2, and 5 form one block. They would be rerandomized among sequences , ,ACB CAB

and . Subjects 3, 4, and 9 form a second block. They would be rerandomizedCAB

among sequences , , and . And subjects 6,  7, and 8 form the third block.CBA ABC ABC

They would be rerandomized among sequences , , and . I refer to theseBAC BCA BCA

blocks as a symmetric partitioning of the cases in that the cases within blocks are

rerandomized among exactly those sequences to which they were originally

randomized.

 The  argument for the  function in  can begroup PermutationTest S-Plus

used to control the rerandomization by blocks.

 For the second comparison, Meclastine vs. Placebo, the associated null

treatment effect hypothesis would restrict rerandomization in a similar way. The nine

cases again would be blocked into three sets of three, although the cases blocked

together would differ from the first comparison.
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  For this nine-case study, either reference set of rerandomizations is quite

limited. For each block of three cases the number of different rerandomizations, two

to one sequence and one to a second sequence, is just . With theº$x¶¸#x ô "x¹» é $

three blocks rerandomized independently of one another, the total number of possible

rerandomizations is . The smallest -value possible is just .$ é #( "¶#( é !Æ!$($ P a b
Had 12 cases been employed, two randomized to each of the six possible medication

sequences, the reference sets for each of the two hypothesis tests would have

contained  elements, providing a distinctly more powerfulº%x¶¸#x ô #x¹» é ' é #"'$ $

experiment.

Split Plot ( ) Designs: Mixed Within and Between Cases Treatment FactorsSP

 As for the random sample ANOVA, it is possible to design randomization

studies with both between and within cases treatment factors. To provide for the

rerandomization analysis, cases must be doubly randomized. Cases could first be

randomized among sequences of levels of the Within Factor  and then randomizeda bB

among levels of Between Factor .a bA

 Comparisons among the levels of Factor  would be carried out as for betweenA

groups designs. Typically, the treatment response score for a case is the sum (or,

average) of the responses over the levels of Factor .B

 Comparisons among the levels of Factor  are carried out as for within casesB

designs. When rerandomizing, however, the cases should be treated as blocked on the

levels of Factor , so as to avoid confounding the effects of the two treatment factors.A

Interaction of Treatment Factors in Randomized Studies

 In some studies carried out as factorial or mixed ANOVAs the researcher is

interested in testing for an interaction between the effects of two treatment factors.  

For studies based on the randomization of available cases the locus of any interaction

can not be in the pattern of means of global population distributions. There are three

randomization designs, however, for which treatment interactions, though differently

located, can be hypothesized.
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 In a 2 2  factorial within-cases designWithin case interaction hypotheses. a bô

an interaction may be present in the responses of an individual case. The cases are

randomized among sequences of the four treatments  , , and .A B A B A B A B" " " # # " # "Ç

Each case receives all four treatments allowing us to compute an interaction score forÇ

the th case:i

s A B A B A B A B3 " " " # # " # #3
é c d c da b a b a b a b� � �    .

3 3 3

The average of these provides an interaction test statistic. Under the no interaction

hypothesis it should be close to zero. How can we generate a null reference

distribution to test that hypothesis?

 As in the  study there are restrictions on how the four-element responseFFF

vectors can be rerandomized. Under the null interaction hypothesis the a bB B" #�

differences can be permuted between the two levels of . This translates intoA

exchangeability between pairs of population distributions. For example, the

population distributions for the two treatment sequences : , , , I a bA B A B A B A B" " " # # " # #

and : , , ,  would be exchangeable, the two levels of  havingII a bA B A B A B A B A# " # # " " " #

been interchanged in the sequences.

 The randomized within case factorial design should provide as well for testing

for  and  effects. Under the null  effect hypothesis the  sums can beA B A B Ba b" #�

permuted between the two levels of . Thus, the same exchangeability rules hold forA

the  effect as for the  interaction. Under the null  effect hypothesis theA A B Bô

a bA B A B" #� A  sums can be permuted between the two levels of , if there is no ô

interaction. In the event of an interaction, the null  effect hypothesis is evaluatedB

separately at the two levels of , i.e., the and responses can be permutedA A A  " #

between the two levels of  as two separate analyses. In either instance, two additionalB

treatment sequences would be needed: under a null  hypothesis, observations fromB

the sequence : A B , A B , A B , A B  would be exchangeable with those fromIII a b" # " " # # # "

sequence  above and observations from : A B , A B , A B , A B would beI IV a b# # # " " # " "
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exchangeable with those from sequence , the levels of  having been interchangedII B

to produce the two new sequences.

 Thus, cases must be randomized among a  minimum of four well-chosen

sequences for interaction and main treatment effect hypotheses to be tested.

Alternative or additional sets of four sequences, each set constructed in accordance

with the same considerations, could be used as well.

 Interaction can also be defined at theSplit plot design interaction hypotheses. 

individual case level in the mixed between and within case treatment factor design. I’ll

assume, as described for the earlier  design, that each case is doubly randomized,SP

first to one of the sequences  or  of the within case factor and then toa b a bB , B B , B" # # "

either level  or level  of the between groups factor. We can obtain for each case aA A" #

Factor  difference score,  , and take as our interaction test statisticB s B B3 é a b# " 3
�

the average of these Factor  difference scores for those cases randomized to level B A#

subtracted from the average Factor  difference score for cases randomized to levelB

A".

 A null reference distribution is generated for this test statistic quite easily by

rerandomizing the Factor  difference scores among levels and , according to theB A A" #

original between cases randomization strategy.

 A randomized blocks between groups interaction test. The within cases and

split plot factorial designs require that we administer all levels of at least one

treatment factor to each case. This will not be possible in all studies. What can we do

about testing for an interaction in the randomized between groups 2 2 factorialô

design? If randomization among the four treatment levels,  , , andA B A B A B" " " # # "Ç

A B# ", is completely random there are no exchangeabilities among population

distributions that can be used to construct a null reference distribution for a test of

treatment interaction. However, if cases are randomized by blocks among the four

treatment levels a test of interaction, , is possible. How interpretableat the block level

such an interaction proves to be will depend on how homogeneous the cases are

within each block. This approach may be quite satisfactory, say, where the cases
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within a block are rat pups from the same litter. It may be less satisfactory if they are,

say, male college students matched only on grade-point-average.

 I’ll outline the general approach. It is based on what we have seen for the split

plot design. Again, for ease of illustration, we take the two treatment factors,  and ,A B

to each have two levels. Four homogeneous cases make up each block. Within each

block we randomize two cases to level  and two to level . The pair randomizedA A" #

to level is randomized again, one case to level , the other to . A secondA B B" " #

randomization is applied as well to the pair of cases at level  The response scoresA#Æ

for the four cases permit the computation of an interaction score for each block of

cases, A B A B A B A Bc d c da b a b a b a b" " " # # " # #� � �   , and these can be averaged over

blocks to produce an interaction test statistic. To develop a null reference distribution

for this statistic we can rerandomize, between levels of , the pair of A B Ba b" #�

differences in each block and recompute each block’s interaction score.

Randomized Points of Intervention

 The randomized within case designs are predicated on the assumption that we

can randomize the order in which treatments are presented to the individual case.

There are instances in which that may not be true, or, where such a research strategy

will not answer the question in which we are interested. For example, we may want to

know explicitly what happens when a case is moved from Treatment  to TreatmentA

B. Is there a statistically significant increase, decrease, or change in the case’s response

to treatment?

 Can a randomization strategy be used to answer this question? Yes, and the

strategy is to randomize the point at which the case is moved from one treatment to

the other, the point of intervention.

 Consider this example. An instructor is interested in the impact on student

attendance at her lectures of publishing lecture outlines on the web a day in advance.

Her course meets 40 times in the course of a term and she can capture attendance

numbers for each class meeting. Her research strategy is this. She randomly chooses
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one lecture between the 10th and 29th to introduce the publication. Her test statistic is

the difference in attendance between that at the lecture immediately preceding the

chosen one and that at the fifth lecture after starting publication. To be specific, I’ll

assume her random choice of lecture was number 14. For each lecture beginning with

lecture 14 a lecture outline is published on the preceding day. As her test statistic she

subtracts from the attendance at lecture 13 the attendance at lecture 19. Is the change

in attendance significantly large, or does it just reflect the random choice of a pair of

lectures at which to count heads?

 The null hypothesis is that the intervention has no effect, that the observed

vector of attendance figures would be just as likely an outcome for any of the other

starting dates that might have been randomly chosen.  To test the null hypothesis our

instructor will compare her attendance change against a null reference distribution of

changes, computed by looking at attendance differences for all of the intervention

points that might have been chosen. Because the choice of intervention point was

limited to 20 possibilities, the null reference distribution will consist of 20 elements,

one for each possibility: the change in attendance from lecture 9 to lecture 14, from

lecture 10 to lecture 15, , from lecture 27 to lecture 32, and from lecture 28 toÉ

lecture 33. If her change is large when compared with the distribution she may have a

case for deciding that outline publication did influence attendance.

 Alas, the small reference distribution precludes a -value smaller thanP

a b"¶#! é !Æ!& in this hypothetical study. How could the study be made more

powerful? Enlist a colleague, converting it from a one-case to a two-case study. If the

two instructors independently choose one of 20 possible points of intervention, the

null reference set for the test statistic–now the average of two changes in attendance–

will be made up of  elements.#! é %!!#

 In the laboratory setting, of course, the range of points of intervention can be

dramatically larger. Rather than choosing among one of 20 days, one may choose a

stimulus onset time randomly from among a thousand or more possibilities.

A Final Note on -valuesP
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 I have emphasized the natural use of rerandomization techniques to establish

P-values for tests of hypotheses in randomized available case studies. This should not

be read as support for dependence on -values as the sole indicators of differentialP

response to treatment. It should be expected of researchers that they report as well

both the magnitudes of treatment effects in metrics that are clearly interpretable, using

standardized effect size measures where appropriate, and the results of sensitivity

analyses, assessing the impact of individual cases on those treatment effects. The

latter precaution is important particularly in randomized available case studies. The

set of available cases is not a random sample and, depending on how constituted, it

may include one or more cases that are distinctly different, contaminating the local

population.

Summary

 Modern computing power has brought about a resurgence of interest in

resampling approaches to statistical inference. One result is to free psychologists from

continuing reliance on infinite population inference approximations, notably in the

form of the normal-theory  and  tests, to summarize statistically studies that aret F

based on the randomization of available cases. The result of adherence to the normal-

theory approximations has been the over- or misinterpretation of statistical findings.

By contrast, rerandomization tests build directly on the experimental randomization of

subjects, clients, or animals to alternative treatments to provide the appropriate local

causal inference. Rerandomization analyses can be developed quite readily for both

between groups and within cases research designs.

 Further practical applications of rerandomization can be seen in the recent

texts of Edgington (1995), Good (1994 and 1999), Lunneborg (1999), Manly (1997),

and Sprent (1998).
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Table 1

Heights of Self- and Cross-fertilized Plant Pairs 

______________________________________________________
Pot      Left Plant       Right Plant   Diff
Pair   Type   Height     Type   Height C S�
1    C      23.5       S    17.4 � 'Æ"
2    C      12.0       S      20.4 � )Æ%
3       S  20.0       C      21.0 � "Æ!
4    C  22.0       S      20.0 � #Æ!
5       S  18.4       C      19.1 � !Æ(
6       S  18.6       C      21.5 � #Æ*
7       S  18.6       C      22.1 � $Æ&
8       S  15.3       C      20.4 � &Æ"
9       S  16.5       C      18.3 � "Æ)
10      S  18.0       C      21.6 � $Æ'
11      C  23.3       S      16.3 � (Æ!
12      C  21.0       S      18.0 � $Æ!
13      C  22.1       S      12.8 � *Æ$
14      S  15.5       C      23.0 � (Æ&
15      S  18.0       C      12.0 � 'Æ!
_________________________________________________
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Table 2

Reported Alcoholic Binges, by Orientation Condition

_______________________________________

Moderation Orientation: 8 12 7

No Moderation Orientation: 9 11       13  

_______________________________________
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Table 3

Rerandomizations of the Binge Reports

Customary Orientation  Moderation Orientation Difference in Means

 7,8,9   11,12,13   4�

 7,8,11   9,12,13   2.67�

 7,8,12   9,11,13   2�

 7,8,13   9,11,12   1.33�

 7,9,11   8,12,13   2�

 7,9,12   8,11,13   1.33�

 7,9,13   8,11,12   0.67�

 7,11,12   8,9,13     0

 7,11,13   8,9,12     0.67

 7,12,13   8,9,11     1.33

 8,9,11   7,12,13   1.33�

 8,9,12   7,11,13   0.67�

 8,9,13   7,11,12     0

 8,11,12   7,9,13     0.67

 8,11,13   7,9,12     1.33

 8,12,13   7,9,11     2

 9,11,12   7,8,13     1.33

 9,11,13   7,8,12     2

 9,12,13   7,8,11     2.67

 11,12,13   7,8,9     4

_______________________________________________________
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Table 4

Finger Tapping Rates, College Males Randomized to Treatments

____________________________________________________________

Treatment Group     Taps per Minute

     0 mg Caffeine:  242, 245, 244, 248, 247, 248, 242, 244, 246, 242

100 mg Caffeine:  248, 246, 245, 247, 248, 250, 247, 246, 243, 244

200 mg Caffeine:  246, 248, 250, 252, 248, 250, 246, 248, 245, 250

____________________________________________________________



Random Assignment of Available Cases - 48

Table 5

Attention Scores for Twins, by Mother Condition

____________________________________________________

Twin Pair:        1     2     3     4     5     6     7     8      9    10

Mother Present:           7   10     9     8     7     6     8     9    12    13

Mother Absent:            4     6   10    8      5    3    10     8      8   10

____________________________________________________
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Table 6

Average Flicker Fusion Frequencies by Subject by Treatment

_____________________________________________________________

Subject No.:  Day 1   Day 2   Day 3

 1  31.25 (A)  31.25 (C)  33.12 (B)

 2  25.87 (C)  26.63 (A)  26.00 (B)

       3  23.75 (C)  26.13 (B)  24.87 (A)

 4  28.75 (A)  29.63 (B)  29.87 (C)

 5  24.50 (C)  28.63 (A)  28.37 (B)

 6  31.25 (B)  30.63 (A)  29.37 (C)

 7  25.50 (B)  23.87 (C)  24.00 (A)

 8  28.50 (B)  27.87 (C)  30.12 (A)

 9  25.13 (A)  27.00 (B)  24.63 (C)

Medications: A  meclastine, B placebo, C  promethazineé é é

______________________________________________________________
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Figure 1

Analysis of the Guilt/Control Comparison of Helper Behavior

___________________________________________________________________

> helpv<- c(rep(1,3),rep(0,17),rep(1,11),rep(0,9))
> trtv<- c(rep("C",20),rep("G",20))

> hnh<- permutationTest(trtv,mean(helpv[trtv=="G"])
+ -mean(helpv[trtv=="C"]),alternative="greater",
+ B=999,trace=F)

> summary(hnh)

Summary Statistics:
      Observed      Mean     SE alternative p-value
Param      0.4 -0.003504 0.1594     greater   0.015

Empirical Percentiles:
       2.5%  5.0% 95.0% 97.5%
Param  -0.3  -0.3   0.3   0.3
>

____________________________________________________________________
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Figure 2

Analysis of Finger Tapping Rates among Caffeine Groups

____________________________________________________________________

> mg0<- c(242,245,244,248,247,248,242,244,246,242)
> mg100<- c(248,246,245,247,248,250,247,246,243,244)
> mg200<- c(246,248,250,252,248,250,246,248,245,250)

> tapspeed<- c(mg0,mg100,mg200)

> caff<- c(rep(0,10),rep(100,10),rep(200,10))

> cnc<- permutationTest(caff,mean(tapspeed[caff>0],trim=0.20)-
+ mean(tapspeed[caff==0],trim=0.20),B=999,alternative="greater",
+ trace=F)

> summary(cnc)

Summary Statistics:
      Observed     Mean    SE alternative p-value
Param    2.667 -0.02986 1.018     greater   0.004

Empirical Percentiles:
        2.5%   5.0% 95.0% 97.5%
Param -1.917 -1.667 1.833 2.083

> shufgrp<- c(rep(1,10),rep(2,20))

> c12<- permutationTest(caff,mean(tapspeed[caff==200],trim=0.20)-
+ mean(tapspeed[caff==100],trim=0.20),group=shufgrp,B=999,
+ alternative="greater",trace=F)

> summary(c12)

Summary Statistics:
      Observed       Mean    SE alternative p-value
Param    1.833 -0.0008342 1.122     greater   0.055

Empirical Percentiles:
        2.5%   5.0% 95.0% 97.5%
Param -2.167 -1.833 1.833 2.167

>
_________________________________________________________________
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Figure 3

Analysis of Mother Present Effect, Twin Attention Study

_________________________________________________________

> atn<- c(7,10,9,8,7,6,8,9,12,13,4,6,10,8,5,3,10,8,8,10)
> mothr<- c(rep("P",10),rep("A",10))
> pairs<- rep(1:10,2)

> tmp<-permutationTest(mothr,mean(atn[mothr=="P"]-atn[mothr=="A"]),
+ group=pairs,B=999,alternative="greater",trace=F)

> summary(tmp)

Summary Statistics:
      Observed    Mean     SE alternative p-value
Param      1.7 0.01311 0.8125     greater   0.027

Empirical Percentiles:
       2.5%  5.0% 95.0% 97.5%
Param  -1.7  -1.3   1.3   1.7
>
_____________________________________________________________________________


